设函数 ().区间 ,定义区间 的长度为 b-a .(1)求区间I的长度(用 a 表示);(2)若,求的最大值.
设函数 (1)当时,求的单调区间;(2)若当时恒成立,求实数的取值范围。
如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记,(1)问当为多少时,所建造的三角形露天活动室的面积最大?(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(I )若视力测试结果不低于5 0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(II)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望,据此估计该校高中学生(共有5600人)好视力的人数
如图所示,图象为函数的部分图象(1)求的解析式 (2)已知且求的值
已知函数是首项为2,公比为的等比数列,数列是首项为-2,第三项为2的等差数列.(1)求数列的通项式.(2)求数列的前项和.