如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角.(1)求证:平面A1B1C⊥平面B1BCC1;(2)求二面角A—B1C—B的余弦值.
函数.(1)若,函数在区间上是单调递增函数,求实数的取值范围;(2)设,若对任意恒成立,求的取值范围.
已知点,是函数 图象上的任意两点,且角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间;(3)当时,不等式恒成立,求实数的取值范围.
某厂生产某种产品(百台),总成本为(万元),其中固定成本为2万元, 每生产1百台,成本增加1万元,销售收入(万元),假定该产品产销平衡。(1)若要该厂不亏本,产量应控制在什么范围内?(2)该厂年产多少台时,可使利润最大?(3)求该厂利润最大时产品的售价。
已知函数的定义域为集合.(1)若函数的定义域也为集合,的值域为,求;(2)已知,若,求实数的取值范围.
如图,平行四边形中,,,,。(1)用表示;(2)若,,,分别求和的值。