已知F1、F2是椭圆+=1(a>b>0)的左右焦点,P是椭圆上一点,∠F1PF2=90°,求椭圆离心率的最小值为
如图,过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=9,C是圆上一点使得BC=4,∠BAC=∠APB,则AB= .
(选修4﹣1 几何证明选讲)如图,两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线OA,OB,A,B是切点,点C在圆O′上且不与点A,B重合,则∠ACB= .
如图,AB是圆O的直径,PB,PE分别切圆O于B,C,若∠ACE=40°,则∠P= .
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为 .
如图,O是半圆的圆心,直径AB=2,PB是圆的一条切线,割线PA与半圆交于点C,AC=4,则PB= .