设函数上两点,若,且P点的横坐标为.(Ⅰ)求P点的纵坐标;(Ⅱ)若求;(Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
(本小题满分14分)某农场计划种植甲、乙两个品种的蔬菜,总面积不超过亩,总成本不超过万元.甲、乙两种蔬菜的成本分别是每亩元和每亩元.假设种植这两个品种的蔬菜,能为该农场带来的收益分别为每亩万元和每亩万元.问该农场如何分配甲、乙两种蔬菜的种植面积,可使农场的总收益最大,最大收益是多少万元?
(本小题满分12分)设命题实数满足,其中,命题实数满足.(1)若,且为真,求实数的取值范围;(2)若是成立的必要不充分条件,求实数的取值范围.
(本小题满分12分)在中,,,分别是角,,的对边,且.(1)求的面积;(2)若,求角.
已知,为圆:与轴的交点(A在B上),过点的直线交圆于两点.(1)若弦的长等于,求直线的方程;(2)若都不与,重合时,是否存在定直线,使得直线与的交点恒在直线上.若存在,求出直线的方程;若不存在,说明理由.
如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.