设函数上两点,若,且P点的横坐标为.(Ⅰ)求P点的纵坐标;(Ⅱ)若求;(Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.(1)求三棱锥的体积;(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
已知函数(均为正常数),设函数在处有极值.(1)若对任意的,不等式总成立,求实数的取值范围;(2)若函数在区间上单调递增,求实数的取值范围.
已知数列为等差数列,数列为等比数列,若,且.(1)求数列,的通项公式;(2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.
如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().