设函数上两点,若,且P点的横坐标为.(Ⅰ)求P点的纵坐标;(Ⅱ)若求;(Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
已知正方体中,E,F分别是,CD的中点(1)证明:(2)证明:平面AED⊥(3)设,求三棱锥的体积。
已知过点A(0,1)且斜率为的直线与圆C:相交于M、N两点。(1)求实数的取值范围(2)求证:为定值(3)若O为坐标原点,且,求K值。
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点。求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD。
已知圆C:,直线。(1)当为何值时,直线与圆C相切;(2)当直线与圆C相交于A、B两点,且AB=时,求直线的方程。
已知命题P:任意“,”,命题q:“存在”若“p或q”为真,“p且q”为假命题,求实数的取值范围。