设函数,若时,有极小值,(1)求实数的取值;(2)若数列中,,求证:数列的前项和;(3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.
(本小题满分14分)已知数列满足且(1)求;(2)数列满足,且时.证明当时, ;(3)在(2)的条件下,试比较与4的大小关系.
已知函数是偶函数.(1)求的值;(2)设,若函数与的图象有且只有一个公共点,求实数的取值范围.
随着国家政策对节能环保型小排量车的调整,两款升排量的Q型车、R型车的销量引起市场的关注。已知2010年1月Q型车的销量为辆,通过分析预测,若以2010年1月为第1月,其后两年内Q型车每月的销量都将以1%的比率增长,而R型车前n个月的销售总量Tn大致满足关系式:.(1)求Q型车前n个月的销售总量Sn的表达式;(2)比较两款车前n个月的销售总量Sn与Tn的大小关系;(3)试问从第几个月开始Q型车的月销售量小于R型车月销售量的20%,并说明理由.(参考数据 )
已知函数,且函数的图象关于直线对称,又. (1)求的值域;(2)是否存在实数,使命题和 满足复合命题为真命题? 若存在, 求出的范围; 若不存在, 说明理由.
中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值