设(1)若在上存在单调递增区间,求的取值范围;(2)当时,在上的最小值为,求在该区间上的最大值.
已知中,角、、的对边分别为,且. (1)求角的大小; (2)设向量,且,求的值.
已知数列的各项均是正数,其前项和为,满足. (I)求数列的通项公式; (II)设数列的前项和为,求证:.
设P1,P2, ,Pj为集合P={1,2, ,i}的子集,其中i,j为正整数.记aij为满足P1∩P2∩ ∩Pj=Æ的有序子集组(P1,P2, ,Pj)的个数. (1)求a22的值; (2)求aij的表达式.
口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求: (1)n的值; (2)X的概率分布与数学期望.
设f(x)=x2x+13,实数a满足|xa|<1,求证:|f(x)f(a)|<2(|a|+1).