已知直三棱柱的三视图如图所示,且是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
已知A,B 分别为曲线C: x 2 a 2 + y 2 = 1 y ≥ 0 , a > 0 与x轴的左、右两个交点,直线 l 过点B,且与 x 轴垂直,S为 l 上异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧 AB ⏜ 的三等分点,试求出点S的坐标;
(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 a ,使得O,M,S三点共线?若存在,求出 a 的值,若不存在,请说明理由。
如图,某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段 OSM ,该曲线段为函数 y = A sin ω x A > 0 , ω > 0 , x ∈ 0 , 4 的图象,且图象的最高点为 S 3 , 2 3 ;赛道的后一部分为折线段 MNP ,为保证参赛运动员的安全,限定 ∠ MNP = 120 °
(Ⅰ)求A , ω 的值和M,P两点间的距离;
(Ⅱ)应如何设计,才能使折线段赛道 MNP 最长?
如图,四边形 ABCD 是边长为 1 的正方形, MD ⊥ 平面 ABCD , NB ⊥ 平面 ABCD ,且 MD = NB = 1 , E 为 BC 的中点.
(1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上是否存在点S,使得 ES ⊥ 平面 AMN ?若存在,求线段AS的长;若不存在,请说明理由
从集合 1 , 2 , 3 , 4 , 5 的所有非空子集中,等可能地取出一个。
(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2)记所取出的非空子集的元素个数为 ξ ,求 ξ 的分布列和数学期望 Eξ
已知曲线 C n : x 2 - 2 nx + y 2 = 0 ( n = 1 , 2 , … ) .从点 P ( - 1 , 0 ) 向曲线 C n 引斜率为 k n ( k n > 0 ) 的切线 l n ,切点为 P n ( x n , y n ) .
(1)求数列 { x n } 与 { y n } 的通项公式;
(2)证明: x 1 ⋅ x 3 ⋅ x 5 ⋅ ⋯ ⋅ x 2 n - 1 < 1 - x n 1 + x n < 2 sin x n y n