某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,求y与x之间的函数关系式.(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?
如图1,在△ABC 中,BC=4,以线段AB为边作△ABD,使得AD=BD, 连接DC,再以DC为边作△CDE,使得DC = DE,∠CDE=∠ADB=α. (1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系; (2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF. ①若α=90°,依题意补全图3, 求线段AF的长; ②请直接写出线段AF的长(用含α的式子表示).
在平面直角坐标系中,反比例函数的图象经过点,. (1)求代数式mn的值; (2)若二次函数的图象经过点B,求代数式的值; (3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线的下方,结合函数图象,求的取值范围.
阅读下面材料: 小明观察一个由正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答:(1)如图1,A、B、C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB; (2)如图2,线段AB与CD交于点O.为了求出的正切值,小明在点阵中找到了点E,连接AE,恰好满足于F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决. 请你帮小明计算:OC=_______________;=_______________;
如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF. (1)求证:直线PC是⊙O的切线; (2)若AB=,AD=2,求线段PC的长.
某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10): 为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元. (1)求y关于x的函数关系式; (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.