有一块边长为4米的正方形钢板,现对其进行切割,焊接成一个长方体无盖容器(切、焊损耗忽略不计),有人用数学知识作了如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成长方体。(Ⅰ)求这种切割、焊接而成的长方体的最大容积.(Ⅱ)请问:能重新设计,使所得长方体的容器的容积吗?若能、给出你的一种设计方案。
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.(1)求f()、f();(2)证明f(x)是周期函数;
设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值.
设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数.
的偶函数,其图象关于点对称,且在区间上是单调函数.求的值.
已知两点,点为坐标平面内的动点,且满足.(Ⅰ)求点的轨迹的方程;(Ⅱ)设过点的直线斜率为,且与曲线相交于点、,若、两点只在第二象限内运动,线段的垂直平分线交轴于点,求点横坐标的取值范围.