有四张正面分别标有数字-2,-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们正面朝下,洗匀后从中抽出一张记下数字,放回洗匀后再从中抽出一张记下数字.(1)请用列表或画树状图的方法表示两次抽出卡片上的数字的所有结果;(2)若将第一次抽出的数字作为点的横坐标a,第二次抽出的数字作为点的纵坐标b,求点(a,b)落在双曲线上的概率.
如图,∠E=40°,CD∥AB,∠ABE=2∠ABC,∠BCE=4∠ABC,(1)若设∠ABC=x°,则∠BCD= °,∠D= °(用含x的代数式表示);(2)求∠D的度数.
解不等式组:
如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为 ,点E坐标为 ;(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;
喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP=S△ABO,若存在,求出点P坐标;若不存在,请说明理由.