已知函数的导函数是,在处取得极值,且.(Ⅰ)求的极大值和极小值;(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
【原创】选修4—4:坐标系与参数方程 在直角坐标系中,参数方程为的直线,与以原点为极点,轴的正半轴为极轴,极坐标方程为的曲线相交于弦,若点,求的值.
(本小题满分10分,矩阵与变换)已知矩阵,,若矩阵对应的变换把直线变为直线,求直线的方程.
【原创】选修4-1:几何证明选讲(本小题满分10分) 如图,,是圆的两条弦,它们相交于的中点,若,,,求圆的半径.
设数列是各项均为正数的等比数列,其前项和为,若,. (1)求数列的通项公式; (2)对于正整数(),求证:“且”是“这三项经适当排序后能构成等差数列”成立的充要条件; (3)设数列满足:对任意的正整数,都有,且集合中有且仅有3个元素,试求的取值范围.
(本小题满分16分)已知函数,实数满足,设. (1)当函数的定义域为时,求的值域; (2)求函数关系式,并求函数的定义域; (3)求的取值范围.