如图,已知是⊙的直径,弦,垂足为点,点是上一点,且.试判断的形状,并说明你的理由.
如图1所示,在Rt△ABC中,∠ACB=90°,点D为边BC上任意一点,以直线AD为对称轴,作Rt△ABC的轴对称图形Rt△AEF,点M、点N、点P、点Q分别为AB、BC、EF、EA的中点. (1)求证:MN=PQ; (2)如图2,当BD=BC时,判断点M、点N、点P、点Q围成的四边形的形状,并说明理由; (3)若BC=6,请你直接写出当①BD=0;②BD=3;③BD=2;④BD=6时,点M、点N、点P、点Q围成的图形的形状.
如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2. (1)求该反比例函数和一次函数的解析式; (2)求点B的坐标; (3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题: (1)样本中喜欢B项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ; (2)把条形统计图补充完整; (3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?
甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?
(1)已知:如图1,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE. (2)如图2,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA.求:劣弧BC的长.(结果保留π)