某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据的茎叶图如图所示.(1)根据样品数据,计算甲、乙两个车间产品重量的平均值与方差,并说明哪个车间的产品的重量相对较稳定;(2)若从乙车间件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过克的概率.
设. (Ⅰ)判断函数在的单调性并证明; (Ⅱ)求在区间上的最小值。
已知函数与函数. (I)若的图象在点处有公共的切线,求实数的值; (II)设,求函数的极值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
(本小题共13分) 已知椭圆和直线L:="1," 椭圆的离心率,直线L与坐标原点的距离为。 (1)求椭圆的方程; (2)已知定点,若直线与椭圆相交于C、D两点,试判断是否存在值,使以CD为直径的圆过定点E?若存在求出这个值,若不存在说明理由。
(本小题共14分) 已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围.