在平面直角坐标系中,以为始边,角的终边与单位圆的交点在第一象限,已知.(1)若,求的值;(2)若点横坐标为,求.
设实数, 设函数的最大值为。(1)设,求的取值范围,并把表示为的函数;(2)求
(本题满分13分)如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方,PA⊥PF.(1)求点P的坐标;(2)设M椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值
已知数列中,,.且k为等比数列。 (Ⅰ) 求实数及数列、的通项公式;(Ⅱ) 若为的前项和,求
已知函数,,和直线: .又. (1)求的值;(2)是否存在的值,使直线既是曲线的切线,又是的切线;如果存在,求出k的值;如果不存在,说明理由.(3)如果对于所有的,都有成立,求k的取值范围.
已知椭圆:的离心率为,过坐标原点且斜率为的直线与相交于、,.⑴求、的值;⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.