某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
已知函数且是的两个极值点,, (1)求的取值范围; (2)若,对恒成立。求实数的取值范围;
设函数 (Ⅰ)求函数的极值点; (Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围; (Ⅲ)证明:
设函数. (Ⅰ)若x=时,取得极值,求的值; (Ⅱ)若在其定义域内为增函数,求的取值范围; (Ⅲ)设,当=-1时,证明在其定义域内恒成立,并证明().
设函数,, 其中|t|≤1,将f(x)的最小值记为g(t). (1)求g(t)的表达式; (2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.
已知函数f(x)=x3+ax2+b的图象在点P(1,0)处的切线与直线3x+y=0平行, (1)求常数a、b的值; (2)求函数f(x)在区间[0,t]上的最小值和最大值。(t>0)