某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
设函数,. (1) 若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数); (2)若对任意,恒成立,求的取值范围.
已知抛物线 (1)若点是抛物线上一点,求证过点的抛物线的切线方程为:; (2)点是抛物线准线上一点,过点作抛物线的两条切线,切点分别为,求的最小值,并求相应的点的坐标.
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
若广告费支出与销售额回归直线方程为. (1)试预测当广告费支出为12万元时,销售额是多少? (2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,点E为AB上一点,且,点F为PD中点. (Ⅰ)若,求证:直线AF平面PEC ; (Ⅱ)是否存在一个常数,使得平面PED⊥平面PAB,若存在,求出的值;若不存在,说明理由,
在中,角所对的边分别为,已知, (1)求的大小; (2)若,求的取值范围.