某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A型卡车和8辆B型卡车.又已知A型卡车每天每辆的运载量为30吨,成本费为0.9千元;B型卡车每天每辆的运载量为40吨,成本费为1千元.(1)如果你是公司的经理,为使公司所花的成本费最小,每天应派出A型卡车、B型卡车各多少辆?(2)在(1)的所求区域内,求目标函数的最大值和最小值.
(理)函数, 定义的第阶阶梯函数,其中,的各阶梯函数图像的最高点,最低点 (1)直接写出不等式的解; (2)求证:所有的点在某条直线上. (3)求证:点到(2)中的直线的距离是一个定值.
已知直角坐标平面内点,一曲线经过点,且 (1)求曲线的方程; (2)设,若,求点的横坐标的取值范围.
关于的不等式的解集为。 (1)求实数的值; (2)若实系数一元二次方程的一个根,求.
、已知锐角中,三个内角为,向量,,‖,求的大小.
(本题18分,第(1)小题4分;第(2)小题6分;第(3)小题8分) 如图,已知椭圆:过点,上、下焦点分别为、, 向量.直线与椭圆交于两点,线段中点为. (1)求椭圆的方程; (2)求直线的方程; (3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线与区域有公共点,试求的最小值.