如图,在直角坐标系中,以点A(,0)为圆心,以为半径圆与x轴相交于点B,C,与y轴相交于点D,E.(1)若抛物线经过点C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;(2)在(1)中的抛物线的对称轴上有一点P,使得△PBD的周长最小,求点P的坐标;(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
(本题满分10分.为方便答题,可在答卷上画出你认为必要的图形) 如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q. (1)求证:△APQ∽△CDQ; (2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?
已知关于x的方程x2﹣mx+m﹣3=0, (1)若该方程的一个根为﹣1,求m的值及该方程的另一根; (2)求证:不论m取何实数,该方程都有两个不相等的实数根.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(本题满分8分.为方便答题,可在答卷上画出你认为必要的图形) 如图,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°. 求证:BE=CF.
为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题: (1)本次抽样测试的学生人数是; (2)图1中∠α的度数是,并把图2条形统计图补充完整; (3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为. (4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.