已知二次函数,且不等式的解集为.(1)方程有两个相等的实根,求的解析式;(2)的最小值不大于,求实数的取值范围;(3)如何取值时,函数存在零点,并求出零点.
(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.
已知为双曲线的左、右焦点.(Ⅰ)若点为双曲线与圆的一个交点,且满足,求此双曲线的离心率;(Ⅱ)设双曲线的渐近线方程为,到渐近线的距离是,过的直线交双曲线于A,B两点,且以AB为直径的圆与轴相切,求线段AB的长.
已知函数,其中为非零常数.(Ⅰ)解关于的不等式;(Ⅱ)若当时,函数的最小值为3,求实数的值.
已知抛物线的准线与x轴交于点Q.(Ⅰ)若过点Q的直线与抛物线有公共点,求直线的斜率的取值范围;(Ⅱ)若过点Q的直线与抛物线交于不同的两点A、B,求AB中点P的轨迹方程.