已知二次函数,且不等式的解集为.(1)方程有两个相等的实根,求的解析式;(2)的最小值不大于,求实数的取值范围;(3)如何取值时,函数存在零点,并求出零点.
已知函数,在点处的切线方程为 (1)求函数的解析式; (2)若对于区间上任意两个自变量的值,都有,求实数的最小值。 (3)若过点,可作曲线的三条切线,求实数的取值范围。
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B。 (1)求椭圆的方程; (2)求的值(O点为坐标原点); (3)若坐标原点O到直线的距离为,求面积的最大值。
在数列中, (1)求的值; (2)证明:数列是等比数列,并求的通项公式; (3)求数列。
如图,已知直三棱柱ABC—A1B1C1,。E、F分别是棱CC1、AB中点。 (1)求证:; (2)求四棱锥A—ECBB1的体积; (3)判断直线CF和平面AEB1的位置关系,并加 以证明。
为援助汶川灾后重建,对某项工程进行竞标,共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。 (1)企业E中标的概率是多少? (2)在中标的企业中,至少有一家来自河南省的概率是多少?