某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为(万元),当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为500元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
(本小题满分15分)在直三棱柱中,底面是边长为2的正三角形,是棱的中点,且. (1)试在棱上确定一点,使平面; (2)当点在棱中点时,求直线与平面所成角的大小的正弦值。
(本小题满分15分)已知数列的前项和满足:(为常数,且). (1)设,若数列为等比数列,求的值; (2)在满足条件(1)的情形下,设,数列的前项和为,若不等式对任意的恒成立,求实数的取值范围.
(本小题满分14分)在中,角所对的边分别为,角为锐角,且 (1)求的值; (2)若,求的最大值。
(本小题满分14分)已知 (1)求的值; (2)求的值。
本题共有3个小题,第(1)小题4分,第(2)小题6分,第(3)小题8分 已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点. (1)若R且,证明:函数必有局部对称点; (2)若函数在区间内有局部对称点,求实数的取值范围; (3)若函数在R上有局部对称点,求实数的取值范围.