设函数的定义域为,并且满足,且,当时,(1).求的值;(2).判断函数的奇偶性;(3).如果,求的取值范围.
设,,Q=;若将,,适当排序后可构成公差为1的等差数列的前三项(I)在使得,,有意义的条件下,试比较的大小;(II)求的值及数列的通项;(III)记函数的图象在轴上截得的线段长为,设,求.
设函数(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.
已知函数(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)(文)设的反函数为,若关于的不等式R)有解,求的取值范围.(理)设的反函数为,若,解关于的不等式R).
已知曲线C:的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.(1)证明:是等比数列;(2)当对一切恒成立时,求t的取值范围;(3)记数列{an}的前n项和为Sn,当时,试比较Sn与n + 7的大小,并证明你的结论.
已知函数时,的值域为,当时,的值域为,依次类推,一般地,当时,的值域为,其中k、m为常数,且(1)若k=1,求数列的通项公式;(2)项m=2,问是否存在常数,使得数列满足若存在,求k的值;若不存在,请说明理由;(3)若,设数列的前n项和分别为Sn,Tn,求。