已知函数.(1)求的最小正周期及单调递减区间;(2)若在区间上的最大值与最小值的和为,求的值.
已知.(1)求的值;(2)若,求的值
将正整数按如图的规律排列,把第一行数1,2,5,10,17, 记为数列,第一数列1,4,9,16,25, 记为数列(1)写出数列,的通项公式;(2)若数列,的前n项和分别为,用数学归纳法证明:;(3)当时,证明:.
已知,,且,在和处有极值.(1)求实数的值;(2)若,判断在区间内的单调性.
抽奖游戏规则如下:一个口袋中装有完全一样的8个球,其中4个球上写有数字“5”,另外4个球上写有数字“10”.(1)每次摸出一个球,记下球上的数字后放回,求抽奖者四次摸球数字之和为30的概率;(2)若抽奖者每交2元钱(抽奖成本)获得一次抽奖机会,每次摸出4个球,若4个球数字之和为20或40则中一等奖,奖励价值20元的商品一件;若4个球数字之和为25或35则中二等奖,奖励价值2元的商品一件;若4个球数字之和为30则不中奖.试求抽奖者收益ξ(奖品价值﹣抽奖成本)的期望.
偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,在某次考试成绩统计中,某老师为了对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:
(1)若与之间具有线性相关关系,求y关于x的线性回归方程;(2)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.参考数据: