已知f(x)=xlnx.(I)求f(x)在[t,t+2](t>0)上的最小值;(Ⅱ)证明:都有。
若是各项均不为零的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和. (Ⅰ)求和; (Ⅱ)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
设函数, (Ⅰ)求函数的最小正周期,并求在区间上的最小值; (Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求.
已知各项均为正数的等比数列,若,则的最小值为 .
(本小题满分10分)选修4-5:不等式选讲 已知函数 (1)若关于的不等式有解,求的最大值; (2)求不等式:的解集.
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线(为参数),(为参数). (1)化的方程为普通方程; (2)若上的点对应的参数为为上的动点,求中点到直线(为参数)距离的最小值.