某商场从生产厂家以每件元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少时利润最大,并求出最大利润(利润销售收入进货支出)
小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为现对三只小白鼠注射这种药物.(Ⅰ)求这三只小白鼠表现症状互不相同的概率;(Ⅱ)用表示三只小白鼠共表现症状的种数,求的分布列及数学期望
已知,其中.若满足,且的导函数的图象关于直线对称.(Ⅰ)求的值;(Ⅱ)若关于的方程在区间上总有实数解,求实数的取值范围.
(1)(本小题满分7分) 选修4一2:矩阵与变换若点A(2,2)在矩阵对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵. (2)(本小题满分7分) 选修4一4:坐标系与参数方程已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:与曲线C2:(t∈R)交于A、B两点.求证:OA⊥OB. (3)(本小题满分7分) 选修4一5:不等式选讲求证:,.
已知二次函数和“伪二次函数” (、、),(I)证明:只要,无论取何值,函数在定义域内不可能总为增函数;(II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为, (i)求证:;(ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.
已知椭圆:(),其焦距为,若(),则称椭圆为“黄金椭圆”.(1)求证:在黄金椭圆:()中,、、成等比数列.(2)黄金椭圆:()的右焦点为,为椭圆上的任意一点.是否存在过点、的直线,使与轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.(3)在黄金椭圆中有真命题:已知黄金椭圆:()的左、右焦点分别是、,以、、、为顶点的菱形的内切圆过焦点、.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.