已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围.
在△ABC中,BC=a,AC=b,a,b是方程的两个根, 且。求:(1)角C的度数; (2)AB的长度。
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列. (Ⅰ)求数列{an}的通项; (Ⅱ)求数列{}的前n项和Sn.
建造一个容积为50,高为2长方体的无盖铁盒,问这个铁盒底面的长和宽各为多少时材料最省?
解关于的不等式:<.
如图是一个从的”闯关”游戏. 规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功. (1)求闯第一关成功的概率; (2)记闯关成功的关数为随机变量X,求X的分布列和期望。