已知函数和.其中.(1)若函数与的图像的一个公共点恰好在轴上,求的值;(2)若和是方程的两根,且满足,证明:当时,.
(本小题满分12分) 如图,在四棱锥中,平面,底面为直角梯形,∥,, (Ⅰ)求异面直线与所成角的大小; (Ⅱ)求证:⊥平面; (Ⅲ)求直线与平面所成角大小的正切值.
(本小题满分12分) 如图,在平行四边形中,边所在直线的方程 为,点. (Ⅰ)求直线的方程; (Ⅱ)求边上的高所在直线的方程.
(本小题满分12分) 设函数定义在上,,导函数,. (1)求的单调区间和最小值;(2)讨论与的大小关系;
(本小题共12分) 已知椭圆.过点(m,0)作圆的切线L交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率; (II)将表示为m的函数,并求的最大值.
本小题满分12分) 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关? (2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率。