已知椭圆:,(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
(本小题满分12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动. (Ⅰ)当点E为BC的中点时, 证明EF//平面PAC; (Ⅱ)求三棱锥E-PAD的体积; (Ⅲ)证明:无论点E在边BC的何处,都有PEAF.
(本小题满分10分)选修4—5:几何选讲 如图,为直角三角形,,以AB为直径的圆交AC于点E,点D是BC边的中点,连接OD交圆O于点M,求证: (Ⅰ)O、B、D、E四点共圆; (Ⅱ).
(本小题满分12分)已知函数R,曲线在点处的切线方程为. (Ⅰ)求的解析式; (Ⅱ)当时,恒成立,求实数的取值范围;
(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
【改编】(本小题满分12分)已知数列的前项和为,满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前n项和.