在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.(1)判断两圆的位置关系;(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.
(本小题满分14分)已知函数(1)求函数的单调区间;(2)当时,,求实数的取值范围
已知椭圆的两个焦点为,离心率为,直线l与椭圆相交于A、B两点,且满足O为坐标原点.(1)求椭圆的方程; (2)求的最值.
(本小题满分14分)某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表)和频率分布直方图(如图).
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求,的值.(2)求在未来连续3天里,有连续2天的日销售量都高于100个且另1天的日销售量不高于50个的概率;(3)用表示在未来3天里日销售量高于100个的天数,求随机变量的分布列和数学期望.
(本小题满分14分)若数列的前项和为,对任意正整数,都有,记.(1)求,的值;(2)求求数列的通项公式;(3)令,数列的前项和为,证明:对于任意的,都有.
(本小题满分12分)如图,在正四面体中,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.