设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).
在等比数列中,,且,又的等比中项为16.(I) 求数列的通项公式:(II) 设,数列的前项和为,是否存在正整数k,使得对任意恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.
设函数,(w为常数,且m >0),已知函数f(x)的最大值为2.(I)求函数的单调递减区间;(II)已知a,b,c是的三边,且.若,,求B的值.
如图,∠BAC的平分线与BC和外接圆分别相交于D和E,延长AC交过D,E,C三点的圆于点F。(Ⅰ)求证:;(Ⅱ)若,求的值。
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
设函数(提示 :)(1)若函数在定义域上是单调函数,求实数的取值范围;(2) 若,证明对任意的正整数n,不等式都成立.