已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.(1)分别求数列,的通项公式,;(2)设数列的前项和为,求的表达式,并求的最小值.
已知数列满足:(1)求的值;(2)求证:数列是等比数列;(3)令(),如果对任意,都有,求实数的取值范围.
已知中,点A、B的坐标分别为,点C在x轴上方。(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
如图,四边形为矩形,平面,,平面于点,且点在上.(1)求证:;(2)求四棱锥的体积;(3)设点在线段上,且,试在线段上确定一点,使得平面.
已知函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值.
已知全体实数集,集合(1)若时,求;(2)设,求实数的取值范围.