设f(x)=|x+1|+|x-3|.(Ⅰ)解不等式f(x)≤3x+4;(Ⅱ)若不等式f(x)≥m的解集为R,求实数m的取值范围.
如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于A、B两点,与抛物线交于C、D两点.当直线与x轴垂直时,.(Ⅰ)求椭圆的方程;(II)求过点O、,并且与椭圆的左准线相切的圆的方程;(Ⅲ)求的最大值和最小值.
已知点分别是射线,上的动点,为坐标原点,且的面积为定值2.(I)求线段中点的轨迹的方程;(II)过点作直线,与曲线交于不同的两点,与射线分别交于点,若点恰为线段的两个三等分点,求此时直线的方程.
已知双曲线的一条渐近线方程为,两条准线的距离为l.(1)求双曲线的方程;(2)直线l过坐标原点O且和双曲线交于两点M、N,点P为双曲线上异于M、N的一点,且直线PM,PN的斜率均存在,求kPM·kPN的值.
已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.(I)求曲线C的方程;(II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点.
已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.(I)求抛物线C的焦点坐标;(II)若点M满足,求点M的轨迹方程.