设,函数 (1)当时,求曲线在处的切线方程;(2)当时,求函数的单调区间;(3)当时,求函数的最小值
如图,在四棱锥中,平面,,,,,.(1)求二面角的余弦值;(2)设为棱上的点,满足直线与平面所成角的正弦值为,求的长.
某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
(1)完成此统计表;(2)估计高三年级学生“同意”的人数;(3)从被调查的女学生中选取2人进行访谈,设“同意”的人数为,求.
(1)若,点在函数的图像上,求数列的前项和;(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2-,求数列 的前n项和Tn.
如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=,sin∠CBA=,求BC的长.
一条斜率为1的直线与离心率为的椭圆:()交于两点,直线与轴交于点,且,,求直线和椭圆的方程.