如图,四棱锥的底面为正方形,底面,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)若,求与平面所成的角的大小.
(12分)如图,的角平分线AD的延长线交它的外接圆于点E(I)证明:(II)若的面积,求的大小。
.(12分)设是一个离散型随机变量,其分布列如下表,试求随机变量的期望与方差.
.(12分)已知的展开式中前三项的系数成等差数列.(1)求n的值;(2)求展开式中系数最大的项.
(12分) 一盒中装有分别标记着1,2,3,4的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同.(1)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率;(2)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求的分布列与数学期望.
(10分)对于数据组
(1)做散点图,你能直观上能得到什么结论?.(2)求线性回归方程.