设数列满足, (Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
平面内动点到定点的距离比它到轴的距离大。(1)求动点的轨迹的方程;(2)已知点A(3,2), 求的最小值及此时P点的坐标.
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组, ,第五组.按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
命题: “方程表示双曲线”();命题:定义域为,若命题为真命题,为假命题,求实数的取值范围.
已知函数,(为常数,为自然对数的底).(1)令,,求和;(2)若函数在时取得极小值,试确定的取值范围;(3)在(2)的条件下,设由的极大值构成的函数为,试判断曲线只可能与直线、(,为确定的常数)中的哪一条相切,并说明理由.
已知椭圆G:过点,,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.(1)求椭圆G的方程;(2)求四边形ABCD 的面积的最大值.