已知正项数列的前项和为,是与的等比中项.(1)求证:数列是等差数列;(2)若,且,求数列的通项公式;(3)在(2)的条件下,若,求数列的前项和.
是否存在常数c,使得不等式对任意正数x, y恒成立?试证明你的结论.
已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值.
设a, b, c且a+b+c=1,求证:
已知:, 求mx+ny的最大值.
如图,已知内接于圆,是圆的直径,四边形为平行四边形,平面,,。⑴证明: DE⊥平面ADC;⑵记求三棱锥的体积;⑶当取得最大值时,求证:。