已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)(Ⅰ)设,求证:当时,;(Ⅱ)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。
如图,斜三棱柱中,侧面是菱形,与交于点,E是AB的中点. 求证:(1)平面; (2)若,求证:.
已知椭圆经过点,离心率为,动点M(2,t)(). (1)求椭圆的标准方程; (2)求以OM为直径且截直线所得的弦长为2的圆的方程; (3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
已知函数,且方程有两个实根 (1)求函数的解析式; (2)设,解关于的不等式.
已知抛物线的顶点是双曲线的中心,而焦点是双曲线的左顶点, (1)当时,求抛物线的方程; (2)若双曲线的离心率,求双曲线的渐近线方程和准线的方程.
有两颗正四面体的玩具,其四个面上分别标有数字,下面做投掷这两个正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗出现的点数(面朝下的数字),y表示第2颗出现的点数(面朝下的数字). (1)求事件“点数之和不小于4”的概率; (2)求事件“点数之积能被或整除”的概率.