某社区有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.试求和.(2)问:小张选择哪家比较合算?为什么?
已知,其中0<ω<2.函数,其图象的一条对称轴为x=.(1)求函数f(x)的表达式及单调递增区间;(2)在△ABC中,a,b,c分别为角A,B,C的对边,S为其面积,若,b=1,S△ABC=,求a的值.
平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为.(1)求圆心的轨迹方程;(2)若点到直线的距离为,求圆的方程.
从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄对月收入的线性回归方程;(Ⅱ)判断变量与之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程中,,,其中,为样本平均值.
如图①,在边长为1的等边中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图②所示的三棱锥,其中.(1) 证明://平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.
有一个容量为100的某校毕业生起始月薪的样本数据的分组及各组的频数如下:
(1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图;(3)根据频率分布估计该校毕业生起始月薪低于2000元的频率.