某社区有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.试求和.(2)问:小张选择哪家比较合算?为什么?
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”. (Ⅰ)已知数列是 “类数列”且,求它对应的实常数的值; (Ⅱ)若数列满足,,求数列的通项公式.并判断是否为“类数列”,说明理由.
选修4-5:不等式选讲 设. (I)求不等式的解集S: (II)若关于x不等式有解,求参数t的取值范围.
选修4-4:坐标系与参数方程 以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数,),曲线C的极坐标方程为, (I )求曲线C的直角坐标方程: (II)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
选修4-1:几何证明选讲 如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N. (I )求证:QM=QN; (II)设圆O的半径为2,圆B的半径为1,当AM=时,求MN的长.
设函数. (I )讨论f(x)的单调性; (II) ( i)若证明:当x>6时, (ii)若方程f(x)=a有3个不同的实数解,求a的取值范围.