如图,在四棱锥中,,, ,,,.(Ⅰ)证明:∥;(Ⅱ)若求四棱锥的体积
(14分)已知中心在原点,顶点在轴上,离心率为的双曲线经过点(I)求双曲线的方程(II)动直线经过的重心,与双曲线交于不同的两点,问是否存在直线使平分线段。试证明你的结论。
( 13分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.
如图,线段AB过x轴正半轴上一定点M(m,0),端点A、B到x轴的距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线,求该抛物线的方程。
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.⑴求该椭圆的标准方程;⑵若是椭圆上的动点,求线段中点的轨迹方程
已知函数通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a,b,c的值。