在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点(-2,-4)的直线的参数方程为(为参数),直线与曲线相交于两点.(Ⅰ)写出曲线的直角坐标方程和直线的普通方程;(Ⅱ)若,求的值.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(Ⅰ)求椭圆的离心率;(Ⅱ)D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程;(Ⅲ)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
已知四棱锥底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E.F分别是线段AB,BC的中点,(Ⅰ)证明:PF⊥FD;(Ⅱ)在PA上找一点G,使得EG∥平面PFD;.(Ⅲ)若与平面所成的角为,求二面角的余弦值.
某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(Ⅰ)写出y与x之间的函数关系式;(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值)
已知的三个内角所对的边分别为a,b,c,向量,,且.(Ⅰ)求角的大小;(Ⅱ)若向量,试求的取值范围.
已知数列的前项和为,,且(为正整数)(Ⅰ)求出数列的通项公式;(Ⅱ)若对任意正整数,恒成立,求实数的最大值