已知斜三棱柱的底面是直角三角形, ,侧棱与底面所成角为,点在底面上的射影落在上.(1)求证:平面;(2)若,且当时,求二面角的大小.
(本小题满分14分)小张经营某一消费品专买店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.(1)把表示为的函数;(2)当销售价为每件50元时,该店正好收支平衡,求该店的职工人数;(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店月利润最大?(利润=收入—支出)
(本小题满分14分)如图,平行四边形中,,,且,正方形所在平面和平面垂直,分别是的中点.(1)求证:平面;(2)求证:;(3)求三棱锥的体积.
(本小题满分12分)已知两条直线,点.直线过点,且与直线垂直,求直线的方程;若直线与直线平行,求的值;点到直线距离为,求的值.
(本小题满分12分)已知A , (1)求和;(2)若记符号,①在图中把表示“集合”的部分用阴影涂黑; ②求和.
(本小题满分14分)已知定义在的函数同时满足以下三条:①对任意的,总有;②;③当时,总有成立.(1)函数在区间上是否同时适合①②③?并说明理由;(2)设,且,试比较与的大小;(3)假设存在,使得且,求证:.