如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)
八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.
请根据图中信息解决下列问题:
(1)共有 名同学参与问卷调查;
(2)补全条形统计图和扇形统计图;
(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.
已知:如图, ∠ ABC ,射线 BC 上一点 D .
求作:等腰 ΔPBD ,使线段 BD 为等腰 ΔPBD 的底边,点 P 在 ∠ ABC 内部,且点 P 到 ∠ ABC 两边的距离相等.
如图,在平面直角坐标系中, ∠ ACB = 90 ° , OC = 2 OB , tan ∠ ABC = 2 ,点 B 的坐标为 ( 1 , 0 ) .抛物线 y = − x 2 + bx + c 经过 A 、 B 两点.
(1)求抛物线的解析式;
(2)点 P 是直线 AB 上方抛物线上的一点,过点 P 作 PD 垂直 x 轴于点 D ,交线段 AB 于点 E ,使 PE = 1 2 DE .
①求点 P 的坐标;
②在直线 PD 上是否存在点 M ,使 ΔABM 为直角三角形?若存在,求出符合条件的所有点 M 的坐标;若不存在,请说明理由.
将矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α < 360 ° ) ,得到矩形 AEFG .
(1)如图,当点 E 在 BD 上时.求证: FD = CD ;
(2)当 α 为何值时, GC = GB ?画出图形,并说明理由.