如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)
在一个平面上有 2017 条直线,最多能将这一平面分成多少个部分.
平面上有 10 条直线,无任何三条交于一点,欲使它们出现 31 个交点,怎样安排才能办到?(只要求画出符合条件的 10 条直线)
能否在平面上画出 7 条直线(任意 3 条都不共点),使得它们中的每条直线都恰好与另 3 条直线相交?如果能,请画出一例,如果不能,请简述理由.
平面上 7 条直线两两相交,试证明:在所有的交角中,至少有一个角小于 26 ° .
在直角坐标系中,有以 A - 1 , - 1 , B 1 , - 1 , C 1 , 1 , D - 1 , 1 为顶点的正方形,设它在折线 y = | x - a | + a 上侧部分的面积为 S ,求 S 关于 a 的函数关系式.