如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.
如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9. (1)求DC和AB的长; (2)证明:∠ACB=90°.
如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.
已知:如图,△ABC中,AB=AC,∠EAC是△ABC的外角,AD平分∠EAC 。 求证:AD∥BC
已知:如图,同一直线上有四点B、E、C、F,且AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.
如图,在△ABC中,AB=BC,点D在AB的延长线上. (1)利用尺规按要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法). ①作∠CBD的平分线; ②作BC边的垂直平分线交BC边于点E,连接AE并延长交∠CBD的平分线于点F. (2)由(1)得:BF与边AC的位置关系是 .