在极坐标系中,求圆上的点到直线的距离的最大值.
如图,三棱柱 A B C - A 1 B 1 C 1 中 C A = C B , A B = A A 1 , ∠ B A A 1 = 60 ° .
(Ⅰ)证明 A B ⊥ A 1 C ; (Ⅱ)若平面 A B C ⊥ 平面 A A 1 B 1 B , A B = C B ,求直线 A 1 C 与平面 B B 1 C 1 C 所成角的正弦值。
如图,在 ∆ A B C 中, ∠ A B C = 90 ° , A B = 3 , B C = 1 , P 为 ∆ A B C 内一点, ∠ B P C = 90 ° .
(1)若 P B = 1 2 ,求 P A ; (2)若 ∠ A P B = 150 ° ,求 tan ∠ P B A .
设f(x)=|x+1|+|x-3|.(Ⅰ)解不等式f(x)≤3x+4;(Ⅱ)若不等式f(x)≥m的解集为R,求实数m的取值范围.
已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),直线l经过定点P(2,3),倾斜角为.(Ⅰ)写出直线l的参数方程和圆的标准方程;(Ⅱ)设直线l与圆相交于A,B两点,求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC.(Ⅰ)求证:BE=2AD;(Ⅱ)当AC=1,EC=2时,求AD的长.