如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=,求NQ的长.
在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为 x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为 y ,依次确定有理数 x y .
(1)请用画树状图或列表的方法,写出 x y 的所有可能的有理数;
(2)求有理数 x y 为整数的概率.
某水果商从批发市场用8万元购进一批大樱桃若干千克,很快销售一空.于是该水果商又用17.6万元购进第二批大樱桃,所购质量是第一批的3倍,但每千克便宜了4元.求该水果商购进第一批大樱桃每千克多少元?
某校有体育、音乐、书法、舞蹈四个活动小组,要求学生全员参加,每人限报一个小组.校学生会随机抽查了部分学生,对学生参加活动小组的情况进行一次统计,将所收集的数据绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息解答下列问题:
(1)本次共抽查了多少学生?
(2)补全条形统计图并求出扇形统计图中“书法”所占圆心角的度数;
(3)已知该校共有1236名学生,请根据调查的结果估计该校参加书法活动小组的学生人数.
如图,网格中每个小方格都是边长为1个单位长度的正方形,点 A , B , C 的坐标分别为 A ( − 2 , 3 ) , B ( − 5 , 1 ) , C ( − 3 , 1 ) .先将 ΔABC 沿一个确定方向平移,得到△ A 1 B 1 C 1 ,点 B 的对应点 B 1 的坐标是 ( 1 , 2 ) ;再将△ A 1 B 1 C 1 绕原点 O 顺时针旋转 90 ° ,得到△ A 2 B 2 C 2 ,点 A 1 的对应点为 A 2 .
(1)画出△ A 1 B 1 C 1 ,并直接写出点 A 1 的坐标;
(2)画出△ A 2 B 2 C 2 ,并直接写出 cos B 的值.
如图, 点 A , B , C 都在抛物线 y = a x 2 − 2 amx + a m 2 + 2 m − 5 (其 中 − 1 4 < a < 0 ) 上, AB / / x 轴, ∠ ABC = 135 ° ,且 AB = 4 .
(1) 填空: 抛物线的顶点坐标为 (用 含 m 的代数式表示) ;
(2) 求 ΔABC 的面积 (用 含 a 的代数式表示) ;
(3) 若 ΔABC 的面积为 2 ,当 2 m − 5 ⩽ x ⩽ 2 m − 2 时, y 的最大值为 2 ,求 m 的值 .