雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:
请你根据以上信息,设计出甲、乙两种板房的搭建方案.
解方程:.
如图,在△ABC中,∠C=60°,AC=2, BC=3.求tanB的值.
已知,求代数式的值.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上两点,经过A、C、B的抛物线的一部分与经过点A、D、B的抛物线的一部分组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线:的顶点. (1)求A、B两点的坐标. (2)“蛋线”在第四象限上是否存在一点P,使得的面积最大?若存在,求出面积的最大值;若不存在,请说明理由; (3)当为直角三角形时,直接写出m的值.______
以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°. (1)点E、F、M分别是AC、CD、DB的中点,连接EF和FM. ①如图1,当点D、C分别在AO、BO的延长线上时,=_______; ②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明; (2)如图3,若BO=,点N在线段OD上,且NO=3.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.