如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
用尺规作图的方法(作垂线可用三角板)找出符合下列要求的点.(保留作图痕迹) (1)在图1中的直线m上找出所有能与A,B两点构成等腰三角形的点P,并用等表示; (2) 在图2中的直线m上找出所有能与A,B两点构成直角三角形的点Q,并用等表示;
已知,在同一直角坐标系中,反比例函数与二次函数的图像交于点. (1)求、的值; (2)求二次函数图像的对称轴和顶点坐标.
西南五省发生旱灾后,某中学八年级(一)班共40名同学开展了“我为灾区献爱心”的活动. 活动结束后,生活委员小林将捐款情况进行了统计 ,并绘制成如图的统计图. (1)求这40 名同学捐款的平均数; (2)该校共有学生1800名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?
(1)计算:;(2)解不等式组
已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧. (1)当正方形的顶点F恰好落在对角线AC上时,求BE的长; (2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.