已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,试比较Tn与的大小,并予以证明.
已知函数 (1)求函数在上的最大值与最小值; (2)若时,函数的图像恒在直线上方,求实数的取值范围; (3)证明:当时,.
已知定点与分别在轴、轴上的动点满足:,动点满足. (1)求动点的轨迹的方程; (2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点(为坐标原点); (i)试判断直线与以为直径的圆的位置关系; (ii)探究是否为定值?并证明你的结论.
已知是的导函数,,且函数的图象过点. (1)求函数的表达式; (2)求函数的单调区间和极值.
如图,在四棱锥中,底面为矩形,为等边三角形,,点为中点,平面平面. (1)求异面直线和所成角的余弦值; (2)求二面角的大小.
已知椭圆C:的左、右焦点分别为,离心率,连接椭圆的四个顶点所得四边形的面积为. (1)求椭圆C的标准方程; (2)设是直线上的不同两点,若,求的最小值.