计算:
抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 5 , 0 ) .
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线 y = 3 5 x + 3 相交于 C 、 D 两点,点 P 是抛物线上的动点且位于 x 轴下方,直线 PM / / y 轴,分别与 x 轴和直线 CD 交于点 M 、 N .
①连接 PC 、 PD ,如图1,在点 P 运动过程中, ΔPCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连接 PB ,过点 C 作 CQ ⊥ PM ,垂足为点 Q ,如图2,是否存在点 P ,使得 ΔCNQ 与 ΔPBM 相似?若存在,求出满足条件的点 P 的坐标;若不存在,说明理由.
为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即 CD = 2 米),背水坡 DE 的坡度 i = 1 : 1 (即 DB : EB = 1 : 1 ) ,如图所示,已知 AE = 4 米, ∠ EAC = 130 ° ,求水坝原来的高度 BC .
(参考数据: sin 50 ° ≈ 0 . 77 , cos 50 ° ≈ 0 . 64 , tan 50 ° ≈ 1 . 2 )
某校开展"我最喜爱的一项体育活动"调查,要求每名学生必选且只能选一项,现随机抽查了 m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1) m = ;
(2)请补全上面的条形统计图;
(3)在图2中,"乒乓球"所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
在某市"棚户区改造"建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米?
(1) 16 - | - 3 | + ( - 4 ) × 2 - 1 ;
(2) ( x + 1 ) 2 + x ( x - 2 ) - ( x + 1 ) ( x - 1 )