如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.
如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)
如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,N、M分别为AC、BD的中点,求证:(1)MN∥BC;(2)MN= (BC-AD).
如图,△ABC中,点O是AC边上的一动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;
如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证:MN⊥AC.
如图所示,在△ABC,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E点,已知AB=10cm,求△DEB的周长。