如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED。(1)如果∠CBD=∠E,求证:BC是⊙O的切线;(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;(3)若tanE=,BC=,求阴影部分的面积。(计算结果精确到0.1)(参考数值:π≈3.14, ≈1.41,≈1.73)
先化简,再求值:,其中,.
在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r.则称P′为点P关于⊙C的反称点,下图为点P及其关于⊙C的反称点P′的示意图. 特别地,当点P′与圆心C重合时,规定CP′=0. (1)当⊙O的半径为1时. ①分別判断点M(2,1),,关于⊙O的反称点是否存在?若存在,求其坐标; ②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x袖上,求点P的横坐标的取值范围; (2)⊙C的圆心在x袖上,半径为1,直线与x轴、y轴分別交于点A,B.若线段AB存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH. (1)若点P在线CD上,如图1, ①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明; (2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)
在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B. (1)求点A,B的坐标; (2)求抛物线C1的表达式及顶点坐标; (3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.
有这样一个问题:探究函数的图象与性质. 小东根据学习函数的经验,对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完整: (1)函数的自变量x的取值范围是____; (2)下表是y与x的几组对应值. 求m的值: (3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象: (4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其它性质(一条即可):_________.